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Klein ± Gordon and Dirac Equations in de Sitter
Space ± Time
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We present and discuss the Klein±Gordon and Dirac wave equations in the
de Sitter universe. To obtain the Dirac wave equation we use the factorization
of the second-order invariant Casimir operator associated to the FantappieÂ±de
Sitter group. Both the Klein±Gordon and Dirac wave equations are discussed in
terms of the spherical harmonics with spin weight. A particular case of Dirac
wave equation is solved in terms of a new class of polynomials.

1. INTRODUCTION

In a recent paper Notte Cuello and Capelas de Oliveira [1] presented

in a systematic way a construction of the Casimir invariant operators associ-

ated to the FantappieÂ±de Sitter group. More recently these authors presented

a study of the Klein±Gordon wave equation [2] in the de Sitter universe

using the so-called FantappieÂ±Arcidiacono [3] method and discussed the

equation in terms of the associated Legendre function. Capelas de Oliveira

[4] discussed the homogeneous d’ Alembert generalized wave equation for

the case of a physical situation involving a small distance (a local problem)

using the same technique. More recently [5] the same authors presented and

discussed the Dirac wave equation by means of the factorization of the

second-order invariant Casimir operator.

Here we discuss Klein±Gordon and Dirac wave equations using spherical

harmonics with spin weight introduced by Newman and Penrose [6] and

more recently by Torres del Castillo [7], and solve a particular case of Dirac’ s
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wave equation in terms of the E l
n( r ) recently introduced by Gomes and

Capelas de Oliveira [8, 9].

This paper is organized as follows: In Section 2 we present and discuss
the generalized Klein±Gordon wave equation, in Section 3 we present and

discuss the generalized Dirac wave equation and solve this equation for a

particular case, and in Section 4 we present our comments.

2. KLEIN± GORDON WAVE EQUATION

In this section we present and discuss the Klein±Gordon wave equation

in the de Sitter universe in spherical coordinates and obtain its solution by

means of the spin-weight technique.

The Klein±Gordon wave equation is given by [1]

I2 C (r, u , f , t) 5 2 M 2 C (r, u , f , t) (2.1)

where M 2 is a constant associated with the mass of the particle and the I2

operator is given by

I2 5 " 2 A 2 H 1 1 1
r 2

R 2 2 - 2

- r 2 1
2rt

R 2

- 2

- r - t
2 1 1 2

t 2c 2

R 2 2 - 2

- (ct)2

1
2

r 1 1 1
r 2

R 2 2 -
- r

1
2t

R 2

-
- t

1
1

r 2 +2 J (2.2)

where the +2 operator, given by

+2 [
- 2

- u 2 1 cot u
-
- u

1
1

sin2 u
- 2

- f 2 (2.3)

is the usual angular momentum operator.

Introducing the I2 operator in equation (2.1), we obtain the following
partial differential equation:

H ¹ 2 1 F j 2 - 2

- j 2 1 2 j h
- 2

- j - h
2 (1 2 h 2)

- 2

- h 2

1 2 j
-
- j

1 2 h
-

- h
2 a G J C 5 0 (2.4)

where C [ C ( j , h , u , f ) and we have put

j 5
r

R
; h 5

ct

R
; M0 5

iRM

"
; a 5

M 2
0

A 2
0
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A 2
0 5 1 1 j 2 2 h 2 and ¹ 2 is the Laplacian operator in spherical coordinates.

Following ref. 7, we have an arbitrary vector field ^ which can be

expressed in terms of its components by means of

^ 5 Fr eÃr 1
1

2
F 2 (eÃu 1 ieÃf ) 1

1

2
F+(eÃu 2 ieÃf )

where Fr , F+, and F 2 have spin weight zero, one, and minus one, respectively,

and eÃr , eÃu , and eÃf are the orthogonal vectors tangent to the spherical coordi-

nate lines.

Then, using the fact that the set of spherical harmonics with spin weight

is a complete set [7], we can suppose for the above equation the following

solutions:

C j 5 [l (l 1 1)]1/2f ( j , h )Ylm( u , f )

C + 5 g1( j , h )1Ylm( u , f ) (2.5)

C 2 5 g2( j , h ) 2 1Ylm( u , f )

The factor [l (l 1 1)]1/2 is introduced for convenience; the variable h is taken

as a constant and we use the fact that the components C j , C +, and C 2 have

spin zero, one, and minus one, respectively.

Then, introducing the functions given by (2.5) in equation (2.4) and

using the fact that the set {eÃr , eÃu 1 ieÃf , eÃu 2 ieÃf } is linearly independent,

we obtain the following ordinary differential equations:

-
- j

1

j 2

-
- j

( j 2f ) 2
l (l 1 1)

j 2 f 2
1

j 2 g1 1
1

j 2 g2 1 j 2 - 2

- j 2 f 1 2 j h
- 2

- j - h
f
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- 2

- h 2 f 1 2 j
-
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f 1 2 h
-

- h
f 2 a f 5 0 (2.6)

1
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- 2
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1
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2
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- 2

- h 2 g1 1 j
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- j

g1 1 h
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- h
g1 2

a
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g1 5 0 (2.8)
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Then, introducing the functions G [ (g1 1 g2)/2 and H [ (g2 2 g1)/2

and using equations (2.7) and (2.8), we obtain the following partial differen-

tial equation:

(1 1 j 2)
- 2G

- j 2 1
2

j
(1 1 j 2)

- G

- j
1 2 j h

- 2G

- j - h

2 (1 2 h 2)
- 2G

- h 2 1 2 h
- G

- h
2 F m

j 2 1 a G G 5 0 (2.9)

where m 5 l (l 1 1).

To solve this differential equation, we introduce the change of indepen-

dent variables defined by

j 5 r cosh t and h 5 r sinh t (2.10)

and we obtain the following partial differential equation:

H (1 1 r 2)
- 2

- r 2 1
1

r
(3 1 2 r 2)

-
- r

2
1

r 2

- 2

- t 2 2 2
tanh t

r 2

-
- t

2
M 2

0

1 1 r 2 2
l (l 1 1)

r 2cosh2 t J G ( r , t ) 5 0 (2.11)

Then, we suppose a separable solution as follows:

G ( r , t ) 5 F ( r )Tl( t ) (2.12)

in the above equation and we obtain two ordinary differential equations

given by

r 2(1 1 r 2)F9 1 r (3 1 2 r 2)F 8 2
M 2

0 r 2

1 1 r 2 F 2 l 2
0F 5 0 (2.13)

and

T 9l 1 2 tanh t T 8l 1
l (l 1 1)

cosh2 t
Tl 2 l 2

0Tl 5 0 (2.14)

where l 2
0 is a constant and the prime denotes differentiation.

Taking l 2
0 5 n (n 1 2), where n 5 0, 1, 2, . . . , we obtain the solution

of equation (2.14) in the r and t variables as

Tl(r, t) 5 1 1 2
c 2t 2

r 2 2
(n 1 2)/2

C n 1 3/2
l 2 n 1 1 1 ct

r 2 (2.15)

where C n
m (x) are the Gegenbauer polynomials.
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The solution of equation (2.13) is given by

F ( r ) 5 exp F 2
p
2

(n 1 n 1 3) G 1 A 2
0

A 2
0 2 1 2

3/4

G (n 2 n )

G (n 1 n 1 3)
2 n 1 3/2 G ( n 1 3/2)

3 H P n 1 3/2
n 1 1/2 1 1

! 1 2 A 2
0 2 1

2i

p
Q n 1 3/2

n 1 1/2 1 1

! 1 2 A 2
0 2 J (2.16)

where M 2
0 5 n ( n 1 3), A 2

0 5 1 1 j 2 2 h 2 [ 1 1 r 2, and P n
n(x) and Q n

n(x)

are the Legendre associated functions of the first and second kinds,

respectively.
Then, rewriting equations (2.6) and using equations (2.7) and (2.8),

we obtain

(1 1 j 2)
- 2f

- j 2 1
2

j
(1 1 j 2)

- f

- j
2

l (l 1 1)

j 2 f 1
2

j 2 H 2
2

j 2 f 1 2 j h
- 2f

- j - h

2 (1 2 h 2)
- 2f

- h 2 1 2 h
- f

- h
2 a f 5 0 (2.17)

and

(1 1 j 2)
- 2H

- j 2 1
2

j
(1 1 j 2)

- H

- j
2

l (l 1 1)

j 2 H 1
2l (l 1 1)

j 2 f 1 2 j h
- 2H

- j - h

2 (1 2 h 2)
- 2H

- h 2 1 2 h
- H

- h
2 a H 5 0 (2.18)

Multiplying equation (2.17) by an arbitrary constant k and using equation

(2.18), we obtain

(1 1 j 2)
- 2

- j 2 (kf 1 H ) 1
2

j
(1 1 j 2)

-
- j

(kf 1 H ) 2
l (l 1 1)

j 2 (kf 1 H )

1 F 2l (l 1 1)

k
2 2 G kf

j 2 1
2k

j 2 H 1 2 j h
- 2

- j - h
(kf 1 H )

2 (1 2 h 2)
- 2

- h 2 (kf 1 H ) 1 2 h
-

- h
(kf 1 H ) 2 a (kf 1 H ) 5 0 (2.19)

Then, choosing the constant k such that

2l (l 1 1)

k
2 2 5 2k (2.20)

we obtain k 5 l and k 5 2 l 2 1. First, for k 5 l, equation (2.19) can be

written as
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H (1 1 j 2)
- 2

- j 2 1
2

j
(1 1 j 2)

-
- j

1 2 j h
- 2

- j - h

2 (1 2 h 2)
- 2

- h 2 1 2 h
-

- h
2 F l (l 2 1)

j 2 1 a G J (lf 1 H ) 5 0 (2.21)

and the solution of this differential equation is given by equation (2.9) making

l ® 2 l as follows:

(lf 1 H )( r , t ) 5 F ( r )T 2 l( t ) (2.22)

Next, for k 5 2 l 2 1, we obtain from equation (2.19)

H (1 1 j 2)
- 2

- j 2 1
2

j
(1 1 j 2)

-
- j

1 2 j h
- 2

- j - h

2 (1 2 h 2)
- 2

- h 2 1 2 h
-

- h
2 F (l 1 1)(l 1 2)

j 2 1 a G J [H 2 (l 1 1) f ] 5 0

(2.23)

and the solution of this differential equation is given by equation (2.9) making

the substitution l ® l 1 1

[H 2 (l 1 1)f ]( r , t ) 5 F ( r )Tl 1 1( t ) (2.24)

where the functions F ( r ) and T 2 l( t )[Tl 1 1( t )] are given by equations (2.16)

and (2.15), respectively.

Solving the system of equations (2.12), (2.22), and (2.24) for the func-

tions g1( j , h ), g2( j , h ), and f ( j , h ) and introducing these functions in equations
(2.5), we can write for l . 0

C j 5 ! l (l 1 1)

2l 1 1
F ( r )[T 2 l( t ) 2 Tl 1 1( t )] Ylm( u , f )

C + 5
l

2l 1 1
F ( r ) F 2l 1 1

l
Tl( t ) 2 Tl 1 1( t ) 2

l 1 1

l
T 2 l( t ) G 1Ylm( u , f )

C 2 5
l

2l 1 1
F ( r ) F Tl 1 1( t ) 1

2l 1 1

l
Tl( t ) 1

l 1 1

l
T 2 l( t ) G 2 1Ylm( u , f )

(2.25)

As a particular case we consider l 5 0. Then the components C 6 are
equal to zero [7] and we assume for equation (2.4) a solution of the form

C j 5 f ( j , h ); C + 5 0; C 2 5 0 (2.26)
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We note that l 5 0 implies m 5 0 and thus Y00( u , f ) is a constant.

Introducing the functions (2.16) in equation (2.4), we get

F (1 1 j 2)
- 2

- j 2 1
2

j
(1 1 j 2)

-
- j

1 2 j h
- 2

- j - h

2 (1 2 h 2)
- 2

- h 2 1 2 h
-

- h
2 1 2j 1 a 2 G f ( j , h ) 5 0 (2.27)

The solution of the above equation is given by equation (2.9) with l 5 1

f ( r , t ) 5 F ( r )T1( t )

where F ( r ) and T1( t ) are given by equations (2.16) and (2.15), respectively

and the variables r and t are defined in equation (2.10). Then, the vector

solution for equation (2.4) with l 5 1 is given by

C 5 F ( r )T1( t ) ? eÃr

where C [ C ( r , t , u , f ).

3. DIRAC WAVE EQUATION

In this section we present and discuss the Dirac wave equation in the

de Sitter universe with spherical coordinates and we obtain the solution for

the stationary case using the spin-weight technique.

The Dirac wave equation is given by [5]

H 1

2
g a g b Lab 2 Rm J C 5 0 (3.1)

where the g c are 4 3 4 matrices that satisfy

g a g b 1 g b g a 5 2 d ab

and the Lab are the angular momentum operators, defined by

Lab 5 2 i " 1 j a
-

- j b
2 j b

-
- j a 2

with a, b 5 0, 1, . . . , 4; m is a real scalar and R is the radius of the de
Sitter universe.

We obtain the explicit form for equation (3.1) in relativistic spherical

coordinates using the technique proposed by FantappieÂand Arcidiacono as

follows [5]:
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A
- C
- t

1 B
- C
- r

1 C
- C
- u

1 D
- C
- f

2
Rm

i "
I4 C 5 0 (3.2)

where

A 5 F R (1 1 t 2/R 2)I2 2 r (1 2 t /R) s r

2 r (1 1 t /R) s r 2 R (1 1 t 2/R 2)I2 G
B 5 F (rt/R)I2 {t 1 (r 2 1 R 2)/R} s r

{t 2 (r 2 1 R 2)/R} s r 2 rt/RI2 G
C 5 F 2 i s f {(t 1 R)/r} s u

{(t 2 R)/r} s u 2 i s f G
and

D 5 F irs u (t 1 R) s f

(t 2 R) s f ir s u G 1

r sin u

with s u [ s ? eÃu ; s f [ s ? eÃf ; s r [ s ? eÃr. Here I2 and I4 are respectively
the 2 3 2 and 4 3 4 identity matrices, and we use for the matrices g a the

following representation:

g l 5 g 0 a l and g 4 5 g 0 g 1 g 2 g 3

where

a l 5 F 0 s l

s l 0 G , g 0 5 3
0 0 2 i 0

0 0 0 2 i

i 0 0 0

0 i 0 0 4
and a l are the Pauli matrices, with l 5 1, 2, 3.

If we put C 5 [
u

v
], where u and v are two-component spinors, and then

write u 5 u 2 q 2 u+l and v 5 v 2 q 2 v+l, where the spinors q and l were

introduced in [6, 7] we can write the following identities:

s ? ¹ u 5 s r
- u

- r
1 s f

1

r sin u
- u

- f
1 s u

1

r

- u

- u

s ? ¹ (u 2 q ) 5 F 1

r

-
- r

(ru 2 ) G q 1 1 1r -± u 2 2 l (3.3)
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s ? ¹ (u+ l) 5 1 1r -± u+ 2 q 2 F 1

r

-
- r

(ru+) G l

and we also note that the following identities hold:

- q
- f

5
i

2
d q ;

- q
- u

5 2
1

2
l;

- l

- u
5

1

2
q ;

- l

- f
5

i

2
d l

s u q 5 2 l; s f q 5 2 il; s r q 5 q ; s u l 5 2 q ; s f l 5 i q

s rl 5 2 l; s u d q 5 sin u q 1 cos u l; s u d l 5 sin u l 2 cos u q
(3.4)

where d [ (
2 1

0

0

1
).

Then, using identities (3.3) and (3.4) and the fact that the set { q , 2 l}
is linearly independent, we can write equation (3.2) as a system of four partial

differential equations:

R 1 1 1
t 2

R 2 2 - u 2

- t
2 1 1 2

t

R 2 - v 2

- t
1 (t 1 R)

- v 2

- r
2 (t 1 R)

1

r
-±v+

1
r 2

R

- v 2

- r
1

rt

R

- u 2

- r
1 -±u+ 2 (1 1 k)u 2 1 (t 1 R)

1

r
v 2 5 0

R 1 1 1
t 2

R 2 2 - v+

- r
1 r 1 1 2

t

R 2 - v+

- t
2 (t 1 R)

- v+

- r
2 (t 1 R)

1

r
-±v 2

2
r 2

R

- v+

- r
1

rt

R

- u+

- r
2 -±u 2 2 (1 1 k)u+ 2 (t 1 R)

1

r
v+ 5 0 (3.5)

r 1 1 1
t

R 2 - u 2

- t
1 R 1 1 1

t 2

R 2 2 - v 2

- t
2 (t 2 R)

- u 2

- r
1 (t 2 R)

1

r
-±u+

1
r 2

R

- u 2

- r
1

rt

R

- v 2

- r
2 -±v+ 1 (1 1 k)v 2 2 (t 2 R)

1

r
u 2 5 0

r 1 1 1
t

R 2 - u+

- t
2 R 1 1 1

t 2

R 2 2 - v+

- t
2 (t 2 R)

- u+

- r
2 (t 2 R)

1

r
-±u 2

1
r 2

R

- u+

- r
2

rt

R

- v+

- r
2 -±v 2 2 (1 1 k)v+ 2 (t 2 R)

1

r
u+ 5 0

where k [ Rm/i " .
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Equations (3.5) can be solved using the method of separation of variables.

Using the fact that the set of spherical harmonics with spin weight is complete,

we look for a solution in the following form:

u 2 [ g (r, t) 2 1/2Yjm( u , f )

u+ [ G (r, t) 1/2Yjm( u , f ) (3.6)

v 2 [ f (r, t) 2 1/2Yjm( u , f )

v+ [ F (r, t) 1/2Yjm( u , f )

where j $ 1/2, 2 j # m # j, and we have used the fact that the components
u 2 and v 2 have spin weight 2 1/2 and the components u+ and v+ have spin

weight 1/2.

Introducing the functions (3.6) in equations (3.5) and using the rela-

tions [7]

-±2 1/2Yjm( u , f ) 5 1 j 1
1

2 2 2 1/2Yjm( u , f )

-±1/2Yjm( u , f ) 5 2 1 j 1
1

2 2 2 1/2Yjm( u , f )

we obtain the following system of partial differential equations:

R 1 1 1
t 2

R 2 2 - g

- t
2 1 1 2

t

R 2 - f

- t
1 1 t 1 R 1

r 2

R 2 - f

- r
1

rt

R

- g

- r

5 1 j 1
1

2 2 G 2 (t 1 R) 1 j 1
1

2 2 1

r
F 1 (1 1 k)g 2 (t 1 R)

1

r
f

R 1 1 1
t 2

R 2 2 - G

- t
1 r 1 1 2

t

R 2 - F

- t
2 1 t 1 R 1

r 2

R 2 - F

- r
1

rt

R

- G

- r

5 1 j 1
1

2 2 g 1 (t 1 R) 1 j 1
1

2 2 1

r
f 1 (1 1 k)G 1 (t 1 R)

1

r
F

r 1 1 1
t

R 2 - g

- t
1 R 1 1 1

t 2

R 2 2 - f

- t
2 1 t 2 R 2

r 2

R 2 - g

- r
1

rt

R

- f

- r

5 (t 2 R) 1 j 1
1

2 2 1

r
G 2 1 j 1

1

2 2 F 1 (t 2 R)
1

r
g 2 (1 1 k)f
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r 1 1 1
t

R 2 - G

- t
2 R 1 1 1

t 2

R 2 2 - F

- t
2 1 t 2 R 2

r 2

R 2 - G

- r
2

rt

R

- F

- r

5 (t 2 R) 1 j 1
1

2 2 1

r
g 1 1 j 1

1

2 2 f 1 (t 2 R)
1

r
G 1 (1 1 k)F (3.7)

We note that solving the above system implies finding a completely

explicit solution for the Dirac wave question in the de Sitter universe.
We now solve the above system for the stationary case, i.e., when the

functions g, G, f, and F are independent of time. In this case, we have

5
(1 1 r 2)

dA

d r
1

1

r 1 j 1
3

2 2 A 5 1 k 1
1

2
2 j 2 B

(1 1 r 2)
dB

d r
1

1

r 1 12 2 j 2 B 5 2 1 k 1
3

2
1 j 2 A

(3.8)

5
(1 1 r 2)

dD

d r
1

1

r 1 j 1
3

2 2 D 5 2 1 k 1
1

2
2 j 2 C

(1 1 r 2)
dC

d r
1

1

r 1 12 2 j 2 C 5 1 k 1
3

2
1 j 2 D

(3.9)

where we have put

A [ g 1 G; B [ F 2 f; C [ G 2 g; D [ F 1 f

with r 5 r /R.

Then, from the system (3.8) we obtain the following ordinary differen-
tial equation:

d 2A

d r 2 1
2

r
dA

d r
2

( j 1 1/2)( j 1 3/2)

(1 1 r 2) r 2 A 1
k (k 1 2)

(1 1 r 2)2 A 5 0 (3.10)

The solution of the above equation is given by [8]

A ( r ) 5
1

r
(1 1 r 2) 2 k/2 F j 1 1/2

k ( r ) FÃj 1 1/2
k ( r ) (3.11)

where F l
k( r ) and FÃlk are given by

F l
k( r ) 5 r l 1 1 o

[(k 2 l)/2]

n 5 0
( 2 1)n (k 2 l 1 1)! G (l 1 3/2)

(k 2 l 2 2n)! G (n 1 l 1 3/2)

1

n! 1 r2 2
2n
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and

FÃlk( r ) 5
1

r l o
[(k 1 l 1 1)/2]

n 5 0

( 2 1)n (k 1 l 1 1)! G ( 2 l 1 1/2)

(k 1 l 1 1 2 2n)! G (n 2 l 1 1/2)

1

n! 1 r2 2
2n

Introducing the function (3.11) in the system (3.8), we obtain

1 k 1
1

2
2 j 2 2 r (1 1 r 2)k/2 B ( r )

5 FÃj 1 1/2
k ( r ) 1 H 1 1 r 2

r F 4( j 1 3/2)( j 1 7/2)

(2j 1 6)
1

4( j 1 1/2)( j 1 5/2)

(2j 1 4)
2 1 G

1 (2k 2 2j 2 2) r 2
k

2 J F j 1 3/2
k ( r )

2
1

r F (k 2 j 1 1/2)(k 1 j 1 5/2)

(2j 1 4)
1

(k 1 j 1 7/2)(k 2 j 2 3/2)

(2j 1 6) G F j 1 1/2
k ( r )

1 ( j 1 3/2)
1

r
F j 1 1/2

k ( r ) 2 (3.12)

where we have used the following relations for the F l
k( r ) and FÃlk( r ) polynomi-

als [9]:

r (1 1 r 2)(2l 1 3)
d

d r
F l

k( r )

5 [(k 2 l)(2l 1 3) r 2 1 4l (l 1 2)(1 1 r 2)] F l
k( r )

2 (k 2 l 1 1)(k 1 l 1 2)F l 1 1
k ( r )

and

r (1 1 r 2)(2l 1 5)
d

d r
FÃlk( r )

5 2 (k 1 l 1 3)(k 2 l 2 1) FÃl 1 1
k ( r )

1 [k 2 l 2 1)(2l 1 5) r 2 1 4(l 1 1)(l 1 3)(1 1 r 2)]FÃlk( r )

Analogously, we solve the system (3.9) and we obtain the solution

C ( r ) 5 2 B ( r ) (3.13)

D ( r ) 5 A ( r ) (3.14)
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Finally, the solution of the Dirac wave equation (stationary case) in the

de Sitter universe is given by

3
u 2

u+

v 2

v+ 4 5 F A ( r )X m
j 1 1/2

B ( r )X m
2 j 2 1/2 G 1 F C ( r )X m

2 j 2 1/2

D ( r )X m
j 1 1/2 G (3.15)

where the functions A, B, C, and D are given by equations (3.11), (3.12),
(3.13), and (3.14) respectively and the functions X m

6 j 6 1/2 are given by

X m
j 1 1/2 5

1

2 F 2 1/2Yjm

1/2Yjm G and X m
2 j 2 1/2 5

1

2 F 2 2 1/2Yjm

1/2Yjm G (3.16)

4. COMMENTS

In this paper we discussed the solution for the Klein±Gordon and Dirac

wave equations using the so-called FantappieÂ±Arcidiacono method and

Newman±Penrose spin-weight technique. In both cases the solutions are

given by means of the spinor spherical harmonics. For the radial Dirac wave

equation the solution is given by a new class of polynomials which is related
to the so-called relativistic Hermite polynomials recently introduced [10].

We also note that as the curvature of de Sitter spacetime goes to zero

(R ® ` ) we obtain the classical results [5].
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